Z-Buffer Precision and Frustum Planes

Michael Hedenus
Pixel (www.pixel.de)
mhe@pixel-group.de
When a vertex is transformed the scaled normal device coordinate (SNDC) has the form (after homogenous division):

$$
\begin{gathered}
z_{N D C}^{S}(z)=S_{1}\left(a+\frac{b}{z}\right)+S_{2} \\
a=\frac{f+n}{f-n}, b=\frac{2 f n}{f-n} .
\end{gathered}
$$

$z_{N D C}^{S}$ is an integer value and stored in the z-buffer. For OpenGL the parameters a and b are computed from the frustum's near and far plane distance n and f in the above way. Because OpenGL uses the negative z -axis as viewing axis the near plane and the far plane intersect the camera's z-axis at $-n$ and $-f$. The scaling parameters S_{1} and S_{2} are chosen that $z_{N D C}^{S}$ ranges from 0 to $2^{\text {zbufferbits }}-1$, where zbufferbits is the number of bits used by the z-buffer.

We assume $f \gg n$, so $a=1$ and $b=2 n$.
To find a relation between the plane distances and the z-buffer precision we compute the change of the SNDC:

$$
\Delta z_{N D C}^{S}(z)=\frac{\partial z_{N D C}^{S}}{\partial z} \Delta z=-\frac{2 n S_{1}}{z^{2}} \Delta z=-\frac{2 n S_{1}}{z} \frac{\Delta z}{z}
$$

Now we ask how large the relative change of the z coordinate around the far plane's distance must be that the SNDC changes by 1 (remember that SNDC is an integer value). From the assumption

$$
\Delta z_{N D C}^{S}(-f)=1
$$

follows

$$
\frac{\Delta z}{z}=\frac{f}{2 n S_{1}} .
$$

We define the z-buffer precision as

$$
\frac{\Delta z}{z}=F .
$$

We observe that the value $2 S_{1}$ is the range of the possible z -values (because the normal device coordinates range from -1 to 1):

$$
2 S_{1}=2^{z b u f f e r b i t s}
$$

From the last three equations we obtain a relation which tells us how far the near plane must be if the maximum z-buffer error (at the far plane) is F :

$$
n>\frac{f}{F 2^{\text {zufferbiuss }}} .
$$

Example: z-buffer has 16 bits, maximum error shall be 1% and far plane distance is 10000 . For the near plane distance follows:

$$
n>\frac{10000}{0,01 \cdot 65536} \approx 15,3
$$

References:

- \quad Steve Baker: Learning to Love your Z-buffer.
http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html

